An Injectable, Calcium Responsive Composite Hydrogel for the Treatment of Acute Spinal Cord Injury
نویسندگان
چکیده
Immediately following spinal cord injury, further injury can occur through several secondary injury cascades. As a consequence of cell lysis, an increase in extracellular Ca(2+) results in additional neuronal loss by inducing apoptosis. Thus, hydrogels that reduce extracellular Ca(2+) concentration may reduce secondary injury severity. The goal of this study was to develop composite hydrogels consisting of alginate, chitosan, and genipin that interact with extracellular Ca(2+) to enable in situ gelation while maintaining an elastic modulus similar to native spinal cord (∼1000 Pa). It was hypothesized that incorporation of genipin and chitosan would regulate hydrogel electrostatic characteristics and influence hydrogel porosity, degradation, and astrocyte behavior. Hydrogel composition was varied to create hydrogels with statistically similar mechanical properties (∼1000 Pa) that demonstrated tunable charge characteristics (6-fold range in free amine concentration) and degradation rate (complete degradation between 7 and 28 days; some blends persist after 28 days). Hydrogels demonstrate high sensitivity to Ca(2+) concentration, as a 1 mM change during fabrication induced a significant change in elastic modulus. Additionally, hydrogels incubated in a Ca(2+)-containing solution exhibited an increased linear viscoelastic limit (LVE) and an increased elastic modulus above the LVE limit in a time dependent manner. An extension of the LVE limit implies a change in hydrogel cross-linking structure. Attachment assays demonstrated that addition of chitosan/genipin to alginate hydrogels induced up to a 4-fold increase in the number of attached astrocytes and facilitated astrocyte clustering on the hydrogel surface in a composition dependent manner. Furthermore, Western blots demonstrated tunable glial fibrillary acid protein (GFAP) expression in astrocytes cultured on hydrogel blends, with some hydrogel compositions demonstrating no significant increase in GFAP expression compared to astrocytes cultured on glass. Thus, alginate/chitosan/genipin hydrogel composites show promise as scaffolds that regulate astrocyte behavior and for the prevention of Ca(2+)-related secondary neuron damage during acute SCI.
منابع مشابه
A Comparison between Therapeutic Effect of Granulocyte Colony-stimulating Factor and Methylprednisolone in Treatment of Patients with Acute Traumatic Spinal Cord Injury
Background & Aim: Spinal cord injury (SCI) is one of the worst kinds of traumatic injuries with remarkable social and economic effects on communities. Methods & Materials/Patients: In this prospective randomized clinical trial, 122 patients with traumatic spinal cord injury were admitted to Poursina hospital within 48 hours of injury to compare granulocyte colony stimulating factor (G-...
متن کاملSustained delivery of bioactive neurotrophin-3 to the injured spinal cord.
Spinal cord injury is a debilitating condition that currently lacks effective clinical treatment. Neurotrophin-3 (NT-3) has been demonstrated in experimental animal models to induce axonal regeneration and functional improvements, yet its local delivery remains challenging. For ultimate clinical translation, a drug delivery system is required for localized, sustained, and minimally invasive rel...
متن کاملEpidemiology of Traumatic Spinal Injury in north of Iran: A prospective Study
Background and Aim: Acute injuries of the spine and spinal cord are causing the greatest amount of disability. They produce high cost outcomes for patients and society psychologically and economically. Knowing the epidemiology of these injuries play an important role in planning for prevention and conservative treatment. But now, we have little information about this in our country. The ai...
متن کاملEffects of Local Transplantation of Autologous Bone Marrow Mesenchymal Stem Cells in Combination with Low Level Laser Therapy in Repair of Experimental Acute Spinal Cord Injury in Rats
Objective- The aim of this study was to demonstrate the efficacy MSCs transplantation in combination with low level laser irradiation (low level laser irradiation) in repair of experimental acute spinal cord injury. Design- Experimental study. Animals- 28 adult male Wistar Rats. Procedures- A ballon- compression technique was used to produce an injury at the T8-T9 level of spi...
متن کاملEpidemiology of traumatic spinal cord injury: The substantial role of imaging methods
Background and aims: One of the most common injuries around the world is the traumatic injury of the spine and spinal cord with unknown worldwide situation of traumatic spinal cord injury (TSCI) affecting on the effectiveness of preventive policy programs. In addition, because of possibility of making paralysis, the potential injury to the spine could be one of the most importa...
متن کامل